Heavy-quark collectivity Light-quark thermalization at RHIC

Nu Xu

Many Thanks to

HFT group - J. Thomas

X. Dong, H. Huang, *Yan Lu*, F. Retiere, H.G. Ritter, A. Rose, L. Ruan K. Schweda, *Aexandre Shabetai*, A. Tai, Z. Xu, *Yifei Zhang*

M. Gyulassy, R. Rapp, R. Vogt, B. Zhang

Physics goals at RHIC

Identify and study the properties of matter with partonic degrees of freedom.

Penetrating probes

- direct photons, leptons
- "jets" and heavy flavor

Bulk probes

- spectra, v₁, v₂ ...
- partonic collectivity
- fluctuations

Hydrodynamic Flow

Collectivity

Electivity

Collectivity

Electivity

What we have learned at RHIC

In Au + Au collisions:

- (1) Partonic energy loss tense interactions amongst partons
- (2) Partonic collectivities and de-confinement
- (3) Hadron yields in the state of equilibrium

Electrons: a mixture c- & b- hadrons

Partonic energy loss!

Energy loss mechanism: under study

M. Gyulassy et al.

Problem: isolation Charm hadron contributions from Beauty-hadrons

v₂ at low p_T region

- Minimum bias data! At low p_T , model result fits mass hierarchy well!
- Details does not work, need more flow in the model!

φ-meson flows

STAR Preliminary, QM05 conference

S. Blyth et al.

Dynamic model results

Models seem to work in $2.5 < p_T < 5 \text{ GeV/c}$

In those models, almost no interactions at the late hadronic stage. Flow developed prior to hadronization:

- ⇒ partonic collectivity
- ⇒ de-confinement

See talks by:

Bellweid, Blyth, Fachini, Gyulassy, Heinz, Hwa, Lu, Oldenburg, Sorensen, Zhang, Zhong

Yields ratio results

200 GeV ¹⁹⁷Au + ¹⁹⁷Au central collision

- In central collisions, thermal model fit well with γ_S = 1. The system is thermalized at RHIC.
- Short-lived resonances show deviations. There is life after chemical freeze-out.

RHIC white papers - 2005, Nucl. Phys. <u>A757</u>, STAR: p102; PHENIX: p184.

What we have learned at RHIC

In Au + Au collisions:

- (1) Partonic energy loss tense interactions amongst partons
- (2) Partonic collectivities and de-confinement
- (3) Hadron yields in the state of equilibrium

In order to demonstrate the possible early partonic thermalization, we need the heavy flavor collectivity measurement. This is an experimental issue.

Physics goals at RHIC

Identify and study the properties of matter with partonic degrees of freedom.

Penetrating probes

- direct photons, leptons
- "jets" and heavy flavor

Bulk probes

- spectra, v₁, v₂ ...
- partonic collectivity
- fluctuations

Hydrodynamic Flow

Collectivity

Solution

Local Thermalization

QCD Energy Scale

T _C A _{QCD} T _{CH}	GeV, similar to values critical temperature QCD scale parameter chemical freeze-out temperature scale for χ symmetry breaking	$\begin{split} m_c &\sim 1.2 - 1.5 \text{ GeV} >> \Lambda_{QCD} \\ &- \text{pQCD production - parton density at small-x} \\ &- \text{QCD interaction - medium properties} \\ &R_{cc} \sim 1/m_C \implies \text{color screening} \\ &J/\psi \implies \text{deconfinement and thermalization} \end{split}$
u-, d-, s	s-quarks: <i>light-flavors</i>	c-, b-quarks: <i>heavy-flavors</i>

quark mass

- Higgs mass: electroweak symmetry breaking. (current quark mass)
- QCD mass: Chiral symmetry breaking.(constituent quark mass)

Strong interactions do not affect heavy-quark masses.

Charm cross sections

First set of measurements, systematic errors are large. Precision data are needed:

- energy loss analysis ⇒ test pQCD in hot and dense medium
- J/ ψ analysis \Rightarrow test Charm thermalization and de-confinement

Non-photonic electron v₂

Charm flows - a hint for partonic thermalization at RHIC!

Problem: Decay effect?

Decayed electron p_T versus D- and B-hadron p_T

The correlation between the decayed electrons and heavy-flavor hadrons is weak.

Pythia calculation Xin Dong, USTC October 2005

Challenges to electron spectra

- 1) Decay kinematics and the correlations
- 2) Separate Charm-hadron from Beauty-hadrons
- 3) Possible collective 'flow' at the low p_T region
- 4) Chemistry of heavy flavors

Direct Topological Identification of Charm-Hadrons in STAR

The Heavy Flavor Tracker

- 1) A new detector: 30 µm silicon pixels to get excellent resolution at the vertex
- 2) Direct topological reconstruction of Charm hadrons
- 3) Analyze charm hadron Flow and Energy loss

The HFT Mechanical Design

- Two Layers of Si
 - 1.5 cm radius
 - 5 cm radius
- High Resolution
 - 100M pixels
 - $-30 \times 30 \mu m^2$
- Thin with low MCS
 - 50 μm thinned Si
 - 0.36% radiation length
 - 0.5 mm beam pipe
 - CMOS technology
- 24 Ladders
 - 10 chips, 2 x 20 cm²
 - 100 mW/cm² power budget
 - air cooled

Open-charm hadron reconstructions

- 1) D_s^0 , D_s^+ , Λ_c and their anti-particles can be reconstructed with the combination of the HFT+SSD*+TOF+TPC.
- 2) Decent reconstruction efficiencies at low p_T region important for flow analysis.

^{*} Place holder for any adequate intermediate tracking device, such as IST.

Rates estimate - spectra

(a) dN/dp_T distributions for D-mesons.

The integrated yield dN/dy = 0.03 as measured in p + p collisions at 200 GeV

----Phys. Rev. Lett. 94, 062301 (2005)

Scaled by $\langle N_{bin} \rangle = 950$, corresponds to the top 10% central Au + Au collisions at RHIC.

- (b) 3-σ significance D⁰ efficiency with TPC+SSD+HFT.
- (c) D⁰ rates from p+p and top 10% central Au + Au collisions at 200 GeV.

p _T (GeV/c)	Δp _T (GeV/c)	# of Events	# of Events	# of Events
		$(\mathbf{p} + \mathbf{p})$	0-10% Au + Au	0-80% Au + Au
			$(N_{bin} = 950)$	$(N_{bin} = 290)$
1.0	0.5	44×10^{6}	0.45×10^{6}	1.75×10^{6}
2.0	0.5	70×10^{6}	0.45×10^{6}	1.75×10^{6}
3.5	1.0	70×10^{6}	0.45×10^{6}	1.75×10^{6}
5.5	1.0	350×10^{6}	0.75×10^{6}	3×10^{6}
7.5	1.0	1200×10^{6}	3.5×10^{6}	11×10^{6}
10.5	1.5	7500 × 10 ⁶	9 × 10 ⁶	30 × 10 ⁶

Rates estimate - v₂

(a) dN/dp_T distributions for D-mesons.

Scaled by $\langle N_{bin} \rangle = 290$, corresponds to the minimum bias Au + Au collisions at RHIC.

(b) Assumed v_2 distributions for D-mesons.

---- PLB 595, 202 (2004)

Error bars shown are from 15% systematic errors

- (c) 3-σ significance D⁰ efficiency with TPC+SSD+HFT.
- (d) D⁰ meson v₂ rates from minimum bias Au + Au collisions at 200 GeV.

The small and large error bars are for 15% and 30% systematic errors, respectively. For the v_2 analysis, 12 bins in ϕ are used.

p ₁	$\mathbf{p}_{-}\left(\mathbf{C}_{0}\mathbf{V}/c\right)$	Δp _T (GeV/c)	# of Events	# of Events	
	pr (Gev/c)		q _c does flow	q _c does not flow	
	0.6	0.2	260×10^{6}	525×10^{6}	
-	1.0	0.5	70×10^{6}	140×10^6	_
Ш	1.0	0.5	70 10	140 / 10	П
	2.0	0.5	$53 \times 10^{\circ}$	125 ×10 ⁶	
L	3.0	1.0	105×10^{6}	175×10^{6}	
	5.0	1.0	210 × 10°	440 × 10°	Γ

Vector meson reconstructions

- 1) Enhanced background rejection power for vector meson reconstructions via di-leptons a factor of 15-20
- 2) Important to test Chiral symmetry restoration physics

Heavy flavor in Spin physics

Heavy flavor production is gluon dominated, Spin sorting,

gives direct access to gluon polarization.

- 1) Heavy flavor mass sets a natural scale; need to separate charm and beauty
 -- displaced vertices measurement ⇒ HFT.
- 2) HFT alone has a limited spin program at top RHIC luminosity \Rightarrow *IST*.

from E. Sichtermann's talk

Summary

STAR upgrades = future of RHIC!

Test pQCD properties in hot and dense medium

- Charm- and bottom-hadron spectra, R_{AA}, charm correlations
- Sensitive and detailed study for partonic energy loss ⇒ `falsify pQCD, a la Miklos'
- Precision Charm cross section for J/ ψ analysis direct test de-confinement and Charm thermalization

(2) Test light-flavor thermalization

- Charm-hadron v₂ partonic thermalization
- Di-lepton invariant mass distributions χ_c symmetry

Summary

STAR upgrades = future of RHIC!

IST: Intermediate Si-Tracker

- Important for p+p and peripheral ion collisions
- Essential for spin physics
- Tremendous enhancement for heavy ion program

Others talks and links

At this meeting:

Yifei Zhang - Charm-hadron reconstructions

Yan Lu - Background

Howard Wieman - R&D

Steve Steadman - Review

Andrew Rose - HFT Software

G. van Nieuwenhuizen - IST/FST

E. Sichtermann - heavy flavor in Spin physics

Other links:

- http://www.star.bnl.gov/protected/future/
- http://www-rnc.lbl.gov/~nxu/group/starhft.html